Supporting Information

The electronic properties of water simulated using a first-

principles van der Waals density functional approach

Changming Fang^{1*}, Wun-Fan Li¹, Rik S. Koster¹, Jiří Klimeš²,

Alfons van Blaaderen¹, Marijn A. van Huis¹

Figure S1. The schematic structure of a $(H_2O)_2$ cluster observed during the molecular dynamics simulations. The O-H bond has a long of about 1.4 Å while the other O-H bonds and the angles in the H2O molecules are varying with time.

Figure S2. (a) Distributions for intra-molecular O-H bond-lengths, (b) Bader charges for H and (c) for O of four selected snapshots (colored in red, green, blue and magma) produced during the molecular dynamics simulations of water, and the time-averaged (black) at 300 K.

Figure S3. Dependences of highest occupied eigen-energy (black points, top), lowest unoccupied eigen-energy (green points, top) and energy gap (bottom, black circles) on time for water in 2ps.

Figure S4: Partial DOS curves of the $2H_2O$ cluster (Figure S1) and the tDOS curve of the corresponding of water at simulated at 300 K.